P.T.O.

V Semester B.Sc. Examination, November/December 2015 (New Scheme) (2013-14 & Onwards) PHYSICS – VI

Astrophysics, Solid State Physics and Semiconductor Physics

Time: 3 Hours Max. Marks: 70

Instruction: Answerfive questions from each Part.

	PART-A	
An	nswer any five of the following questions. Each question carries eight marks.	
	(5×	8=40)
1.	Obtain an expression for the gravitational potential energy of the based on linear density model.	8
2.	a) Write a note on white dwarfs and black holes.	
	b) What is Chandrashekar's mass limit? Explain its significance.	(4+4)
3.	What is Compton effect ? Derive an expression for Compton shift.	8
4.	Obtain an expression for the electrical conductivity of metals based on free electron theory. Hence establish Ohm's law.	8
5.	a) What is Hall effect? Derive an expression for Hall coefficient in metals.	
	b) Write a note on type I and type II semiconductors.	(4+4)
6.	Derive an expression for hole concentration in an intrinsic semiconductor.	8
7.	a) Describe a zener diode voltage regulator and explain load regulation.	
	b) Explain the principle and working of a solar cell.	(4+4)
8.	 a) Explain the input and output characteristics of a npn transistor connected common-emitter configuration. 	in
	b) What is meant by dc load line ? Explain.	(6+2)

PART-B

Solve any five of the following problems. Each problem carries four marks. (5×4=20)

- The luminosity of the star Achernar is 5250 L_☉. If it is 144 light years away from the earth, calculate its brightness.
- If the apparent and absolute magnitude of a star are + 0.87 and 0.63 respectively.
 Calculate its distance from the earth.
- 11. Calculate the average pressure of the sun. Given : $R_{\odot}=6.9599\times10^8 m$, $M_{\odot}=1.989\times10^{30} kg$ and $G=6.673\times10^{-11}$ Nm² kg⁻².
- 12. Calculate the glancing angle on the plane (110) objective rock salt (a = 2.81 Å) corresponding to second order diffraction maximum for the year of wavelength 0.71 Å.
- Calculate the conductivity of pure germanium if the carrier concentration is 2.1×10¹⁹ m⁻³. The mobility of holes and electrons are 0.4 m²/v-s and 0.2 m²/v-s respectively.
- Calculate the Fermi energy of sodium assuming that the metal has 1 free electron per atom.

Given h = 6.625×10^{-34} J-s, m = 9.1×10^{-31} kg and number of free electrons per unit volume = 2.54×10^{28} .

- In a zener diode regulator shown, find the current through the diode when load resistance is
 - a) $30 k\Omega$ and
 - b) $3 \text{ k}\Omega$. Given: $V_z = 30 \text{ V}$.

16. A transistor used in common-emitter configuration has the following set of parameters : $h_{ie} = 1.1 k\Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \times 10^{-6}$ s. Calculate input impedance and output impedance if $R_S = R_L = 1 \ k\Omega$.

PART-C

17. Answer any five of the following questions. Each question carries two marks.

 $(5\times2=10)$

- a) Is brightness of a star a good indicator of its distance? Explain.
- b) A massive star is more luminous than a less massive star. Why?
- c) Can a black hole be seen ? Explain.
- d) Does electrical conductivity of a semiconductor dependent temperature ?

 Explain.
- e) Is Bloch theorem applicable to constant potential? Explain.
- f) In what direction does the Fermi level move in a semiconductor doped with donor impurity as the temperature increases?
- g) Is solar cell a photovoltaic cell? Explain.
- h) Why are hybrid parameters called so?